Feedback Form: tinyurl.com/70discl20feedback

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}
$$

Events A and B are independent if $P[A \cap B]=P[A] P[B]$.
Equivalent definition: $P[A \mid B]=P[A]$

For general events, $P[A \cap B]=P[A] P[B \mid A]=P[B] P[A \mid B]$.

Bayes' Rule: $P[A \mid B]=\frac{P[B \mid A] P[A]}{P[B]}$

CS $70 \quad$ Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rap

DIS BA

1 Box of Marbles

You are given two boxes: one of them containing 900 red marbles and 100 blue marbles, the other one contains 500 red marbles and 500 blue marbles.
(a) If we pick one of the boxes randomly, and pick a marble what is the probability that it is blue?

$$
\frac{1}{2} \cdot \frac{100}{1000}+\frac{1}{2} \cdot \frac{500}{1000}=\frac{1}{20}+\frac{1}{4}=\frac{3}{10}
$$

(b) If we see that the marble is blue, what is the probability that it is chosen from box 1 ?

$$
P\left(A_{1} \mid B\right)=\frac{P\left(A_{1} \cap B\right)}{P(B)}=\frac{\frac{1}{2} \cdot \frac{1}{10}}{\frac{3}{10}}=\frac{1}{6}
$$

(c) Suppose we pick one marble from box 1 and without looking at its color we put it aside. Then we pick another marble from box 1 . What is the probability that the second marble is blue?

$\frac{1}{10}$

2 Mario's Coins

Mario owns three identical-looking coins. One coin shows heads with probability $1 / 4$, another shows heads with probability $1 / 2$, and the last shows heads with probability $3 / 4$.
(a) Mario randomly picks a coin and flips it. He then picks one of the other two coins and flips it. Let X_{1}

(b) Mario randomly picks a single coin and flips it twice. Let Y_{1} and Y_{2} be the events of the 1st and and flips showing heads, respectively. Are Y_{1} and Y_{2} independent? Please prove your answer.

$$
\begin{aligned}
& P\left[Y_{1}\right]=\frac{1}{2} \\
& P\left[Y_{2}\right]=\frac{1}{2} \\
& P\left[Y_{1} \cap Y_{2}\right]=\frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{3} \cdot \frac{2}{4} \cdot \frac{2}{4}+\frac{1}{3} \cdot \frac{3}{4} \cdot \frac{3}{4} \\
&=\frac{14}{48}=\frac{7}{24} \neq \frac{1}{2} \cdot \frac{1}{2}
\end{aligned}
$$

(c) Mario arranges his three coins in a row. He flips the coin on the left, which shows heads. He then flips the coin in the middle, which shows heads. Finally, he flips the coin on the right. What is the probability that it also shows heads?

Skipped. See solutions.

3 Duelling Meteorologists

Tom is a meteorologist in New York. On days when it snows, Tom correctly predicts the snow 70% of the time. When it doesn't snow, he correctly predicts no snow 95% of the time. In New York, it snows on 10% of all days.
(a) If Tom says that it is going to snow, what is the probability it will actually snow?

$$
\begin{array}{ll}
S=\text { snow } & P[S / T]=\frac{P[S \cap T]}{P[T]}=\frac{0.1 \cdot 0.7}{0.1 \cdot 0.7+0.9 \cdot 0.05}=\frac{14}{23} \\
T=\text { Tom predicts snow } &
\end{array}
$$

(b) Let A be the event that, on a given day, Tom predicts the weather correctly. What is $\mathbb{P}[A]$?

$$
\begin{aligned}
P[A] & =P[S \cap T]+P[\bar{S} \cap \bar{T}] \\
& =0.1 \cdot 0.7+0.9 \cdot 0.95=\frac{37}{40}=0.925
\end{aligned}
$$

(c) Tom's friend Jerry is a meteorologist in Alaska. Jerry claims that she is a better meteorologist than Tom even though her overall accuracy is lower. After looking at their records, you determine that Jerry is indeed better than Tom at predicting snow on snowy days and sun on sunny day. Give an instance of the situation described above. Hint: what is the weather like in Alaska, as compared to in New York?

$$
\begin{aligned}
& \text { Suppose it snows } 80 \% \text { of the time in Alaska. } \\
& \begin{aligned}
& P\left[S_{A}\right]=0.8 \\
& P\left[J \mid S_{A}\right]=0.8 \\
& P\left[\bar{J} \mid \bar{S}_{A}\right]=1 \\
& \text { Accuracy }=P\left[S_{A} \cap J\right]+P\left[\overline{S_{A}} \cap \bar{J}\right] \\
&=0.8 \cdot 0.8+0.2 \cdot 1 \\
&=0.84
\end{aligned}
\end{aligned}
$$

