<u>Announcements</u> - Regrade Requests open, due 3/16 - Clobber Policy: 50% both ways - One-on-ones: form due 3/14 - No-HW option form due 3/14

Countability

Examples of countable sets: N, Z, Q, $N \times N$, set of all finite bitstrings, any finite set

Examples of uncountable sets: IR, [0, 1], P(IN), set of infinite-length bitstrings

Computability
Halting Problem: Test Halt (P, x) =
$$\begin{cases} "yes" & \text{if P halts on input x} \\ "no" & \text{if P does not halt on input x} \end{cases}$$

CS 70 Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rao DIS 7A

1 Countability: True or False

- (a) The set of all irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ (i.e. real numbers that are not rational) is uncountable.
- (b) The set of integers x that solve the equation $3x \equiv 2 \pmod{10}$ is countably infinite.
- (c) The set of real solutions for the equation x + y = 1 is countable.

For any two functions $f: Y \to Z$ and $g: X \to Y$, let their composition $f \circ g: X \to Z$ be given by $f \circ g = f(g(x))$ for all $x \in X$. Determine if the following statements are true or false.

- (d) f and g are injective (one-to-one) $\implies f \circ g$ is injective (one-to-one).
- (e) f is surjective (onto) $\implies f \circ g$ is surjective (onto).

For two sets *A* and *B*, define the cartesian product as $A \times B = \{(a,b) : a \in A, b \in B\}$.

- (a) Given two countable sets A and B, prove that $A \times B$ is countable.
- (b) Given a finite number of countable sets A_1, A_2, \ldots, A_n , prove that

is countable.

a) $A = \{A_1, A_2, A_3, ...\}$ $B = \{B_{1}, B_{2}, B_{3}, ...\}$

Each coordinate represents a pair (A;, B;).

3 Undecided?

Let us think of a computer as a machine which can be in any of *n* states $\{s_1, \ldots, s_n\}$. The state of a 10 bit computer might for instance be specified by a bit string of length 10, making for a total of 2^{10} states that this computer could be in at any given point in time. An algorithm \mathscr{A} then is a list of *k* instructions $(i_0, i_1, \ldots, i_{k-1})$, where each i_{ℓ} is a function of a state *c* that returns another state *u* and a number *j* describing the next instruction to be run. Executing $\mathscr{A}(x)$ means computing

 $(c_1, j_1) = i_0(x),$ $(c_2, j_2) = i_{j_1}(c_1),$ $(c_3, j_3) = i_{j_2}(c_2),$...

until $j_{\ell} \ge k$ for some ℓ , at which point the algorithm halts and returns $s_{\ell-1}$.

- (a) How many iterations can an algorithm of *k* instructions perform on an *n*-state machine (at most) without repeating any computation?
- (b) Show that if the algorithm is still running after nk + 1 iterations, it will loop forever.
- (c) Give an algorithm that decides whether an algorithm \mathscr{A} halts on input *x* or not. Does your contruction contradict the undecidability of the halting problem?

a) k instructions, n possible states for each = nk
b) After nk+1 instructions, we have repeated a computation with the machine in the same state, so the same sequence of computations will be repeated.
c) Run A for nk+1 iterations, If it is still running, the program doesn't halt. This is not a contradiction because A needs to be run on an n-state machine, 4 Code Reachability not any arbitrary algorithm.

Consider triplets (M, x, L) where

M is a Java program x is some input L is an integer

and the question of: if we execute M(x), do we ever hit line L?

Prove this problem is undecidable.

Let Reachable (M, x, L) be a program that solves this problem.

