CS $70 \quad$ Discrete Mathematics and Probability Theory

Spring 2022 Koushik Sen and Satish Rao

1 Farmer's Market

Suppose you want k items from the farmer's market. Count how many ways you can do this, assuming:
(a) There are pumpkins and apples at the market.

$$
k-1
$$

(b) There are pumpkins, apples, oranges, and pears at the market.

$$
\binom{k+3}{3}
$$

(c) There are n kinds of fruits at the market, and you want to end up with at least two different types of fruit.

$$
\binom{n+k-1}{n-1}
$$

2 Inclusion and Exclusion

What is the total number of positive integers strictly less than 100 that are also coprime to 100 ?

Lnote: $I^{\prime} m$ counting numbers ≤ 100 rather than strictly less than 100 just to make the numbers nicer.)

3 CS70: The Musical
Edward, one of the previous head TA's, has been hard at work on his latest project, CS70: The Musical. It's now time for him to select a cast, crew, and directing team to help him make his dream a reality.
(a) First, Edward would like to select directors for his musical. He has received applications from $2 n$ directors. Use this to provide a combinatorial argument that proves the following identity:

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

LHS: Choose 2 directors from $2 n$ applicants.
RHS: Let first n applicants be groups A and next n applicants be group B. Edward can choose either both from group A, both from group B, or one from each.

$$
\binom{n}{2}+\binom{n}{2}+n^{2}
$$

(b) Edward would now like to select a crew out of n people. Use this to provide a combinatorial argument that proves the following identity: (this is called Pascal's Identity)

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

LHS: Choose k out of a people.
RHS: Either pick first person and choose $k-1$ out of remaining $n-1$ people, or don't pick first person and choose k people from remaining $n-1$.
(c) There are n actors lined up outside of Edward's office, and they would like a role in the musical (including a lead role). However, he is unsure of how many individuals he would like to cast. Use this to provide a combinatorial argument that proves the following identity:

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

LHS: For each possible group size k, there are (\hat{k}) ways to pick the group and then k ways to choose the lead.

KHS: Pick one of the n actors to be the lead first, and then for each of the n^{-1} other actors, decide whether they are selected or not.
(d) Generalizing the previous part, provide a combinatorial argument that proves the following identity:

$$
\sum_{k=j}^{n}\binom{n}{k}\binom{k}{j}=2^{n-j}\binom{n}{j}
$$

LHS: For all possible group sizes k, there are $\binom{n}{k}$ ways to pick a group and then $\binom{k}{j}$ ways to pick the j leads.

RUS: $\binom{n}{j}$ ways to pick the j leads first, then for $n-j$ remaining people decide whether they are selected or not.

