Polynomials

$$
p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0}
$$

Properties

1. A nonzero polynomial of degree d has at most d roots.
2. Given $d+1$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$ where all the x_{i} are distinct, there is a unique polynomial $p(x)$ of degree at most d such that $p\left(x_{i}\right)=y_{i}$ for all i.

Finite Fields $G F(p)$
All operations are done in $(\bmod \rho)$.
Interpolation
Given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$, find a polynomial of degree at most d that fits all of the given points.

$$
E_{x}:(0,2),(1,1),(2,4) \quad \operatorname{deg}(p) \leq 2
$$

Method 1: System of Linear Equations

$$
\begin{aligned}
& p(x)=a x^{2}+b x+c \\
& p(0)=a=2 \\
& p(1)=a+b+c=1 \\
& p(2)=4 a+2 b+c=4
\end{aligned}
$$

Method 2: Lagrange Interpolation - shown in worksheet

1 Polynomial Practice

(a) If f and g are non-zero real polynomials, how many roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)
(i) $f+g$
(ii) $f \cdot g$
(iii) f / g, assuming that f / g is a polynomial
(i) min: 0
max: max (deg f, deg $g)$
(ii) min: 0
(iii) $\min : 0$
max: $\operatorname{deg} f-\operatorname{deg} g$
Exception: If $f+g=0$, then there are ∞ roots.
(b) Now let f and g be polynomials over $\operatorname{GF}(p)$.
(i) We say a polynomial $f=0$ if $\forall x, f(x)=0$. If $f \cdot g=0$, is it true that either $f=0$ or $g=0$?
(ii) How many f of degree exactly $d<p$ are there such that $f(0)=a$ for some fixed $a \in\{0,1, \ldots, p-$ $1\}$?
(i) No. Consider $f(x)=x(x-1)(x-2)$ and $g(x)=(x-3)(x-4)$ in $G F(5)$.
(ii)

(c) Find a polynomial f over $\mathrm{GF}(5)$ that satisfies $f(0)=1, f(2)=2, f(4)=0$. How many such polynomials are there?
Skipped. See official solutions.

2 Lagrange Interpolation in Finite Fields

Find a unique polynomial $p(x)$ of degree at most 3 that passes through points $(-1,3),(0,1),(1,2)$, and $(2,0)$ in modulo 5 arithmetic using the Lagrange interpolation.
(a) Find $p_{-1}(x)$ where $p_{-1}(0) \equiv p_{-1}(1) \equiv p_{-1}(2) \equiv 0(\bmod 5)$ and $p_{-1}(-1) \equiv 1(\bmod 5)$.

$$
p_{-1}(x) \equiv 4 x(x-1)(x-2) \equiv 4 x^{3}+3 x^{2}+3 x
$$

(b) Find $p_{0}(x)$ where $p_{0}(-1) \equiv p_{0}(1) \equiv p_{0}(2) \equiv 0(\bmod 5)$ and $p_{0}(0) \equiv 1(\bmod 5)$.

$$
p_{0}(x) \equiv 3(x+1)(x-1)(x-2) \equiv 3 x^{3}+4 x^{2}+2 x+1
$$

(c) Find $p_{1}(x)$ where $p_{1}(-1) \equiv p_{1}(0) \equiv p_{1}(2) \equiv 0(\bmod 5)$ and $p_{1}(1) \equiv 1(\bmod 5)$.

$$
p_{1}(x) \equiv 2 x(x+1)(x-2) \equiv 2 x^{3}-2 x^{2}+x
$$

(d) Find $p_{2}(x)$ where $p_{2}(-1) \equiv p_{2}(0) \equiv p_{2}(1) \equiv 0(\bmod 5)$ and $p_{2}(2) \equiv 1(\bmod 5)$.

$$
p_{2}(x) \equiv x(x+1)(x-1) \equiv x^{3}-x
$$

(e) Construct $p(x)$ using a linear combination of $p_{-1}(x), p_{0}(x), p_{1}(x)$ and $p_{2}(x)$.

$$
\begin{aligned}
p(x) & \equiv 3 p_{-1}(x)+p_{0}(x)+2 p_{1}(x) \\
& \equiv 3\left(4 x^{3}+3 x^{2}+3 x\right)+\left(3 x^{3}+4 x^{2}+2 x+1\right)+2\left(2 x^{3}-2 x^{2}+x\right) \\
& \equiv 4 x^{3}+4 x^{2}+3 x+1 \quad(\bmod 5)
\end{aligned}
$$

3 Secrets in the United Nations

A vault in the United Nations can be opened with a secret combination $s \in \mathbb{Z}$. In only two situations should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries, plus the U.N. Secretary-General, must agree.
(a) Propose a scheme that gives private information to the Secretary-General and all 193 member countries so that the secret combination s can only be recovered under either one of the two specified conditions.

$$
\begin{array}{ll}
P(x)=\text { degree } 192 \text { polynomial where } P(0)=s & \text { give each country a point } P(i) \\
Q(x)=\text { degree } 1 \text { polynomial where } Q(0)=s & \text { give } Q(1) \text { to Secretory-General } \\
R(x)=\text { degree } 54 \text { polynomial where } R(0)=Q(2) & \text { give each country a point } R(i)
\end{array}
$$

(b) The General Assembly of the UN decides to add an extra level of security: each of the 193 member countries has a delegation of 12 representatives, all of whom must agree in order for that country to help open the vault. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary-General and to each representative of each country.

See official solutions.

4 To The Moon!

A secret number s is required to launch a rocket, and Alice distributed the values
$(1, p(1)),(2, p(2)), \ldots,(n+1, p(n+1))$ of a degree n polynomial p to a group of \$GME holders $\operatorname{Bob}_{1}, \ldots, \operatorname{Bob}_{n+1}$. As usual, she chose p such that $p(0)=s$. Bob_{1} through Bob_{n+1} now gather to jointly discover the secret. However, Bob_{1} is secretly a partner at Melvin Capital and already knows s, and wants to sabotage $\mathrm{Bob}_{2}, \ldots, \mathrm{Bob}_{n+1}$, making them believe that the secret is in fact some fixed $s^{\prime} \neq s$. How could he achieve this? In other words, what value should he report (in terms variables known in the problem, such as s^{\prime}, s or y_{1}) in order to make the others believe that the secret is s^{\prime} ?

See official solutions.

