

Tree
n vertices
$n-1$ edges

Hypercube
2^{n} vertices
$n 2^{n-1}$ edges

Complete Graph
n vertices $\frac{n(n-1)}{2}$ edges

Planar Graphs
$v+f=e+2$ (for connected planar graphs) $3 f \leq 2 e \quad($ for $e \geq 2)$

$$
e \leq 3 v-6 \quad(\text { for } v \geq 3)
$$

Nonplanar Graphs

K_{5}

$$
K_{3,3}
$$

CS $70 \quad$ Discrete Mathematics and Probability Theory

Spring 2022 Koushik Sen and Satish Rap

DIS RB

1 Short Answers

(a) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?
(b) How many edges need to be removed from a 3-dimensional hypercube to get a tree?
a) $v+f=e+2$
$v+f=(v+5)+2$
$f=7$
b) 3D Hypercube
8 vertices
12 edges

5 edges must be removed

2 Always, Sometimes, or Never
In each part below, you are given some information about the so-called original graph, $O G$. Using only the information in the current part, say whether $O G$ will always be planar, always be non-planar, or could be either. If you think it is always planar or always non-planar, prove it. If you think it could be either, give a planar example and a non-planar example.
(a) $O G$ can be vertex-colored with 4 colors.
(b) $O G$ requires 7 colors to be vertex-colored.
(c) $e \leq 3 v-6$, where e is the number of edges of $O G$ and v is the number of vertices of $O G$.
(d) $O G$ is connected, and each vertex in $O G$ has degree at most 2 .
(e) Each vertex in $O G$ has degree at most 2.
a) either, day planar graph and $K_{3,3}$ can be 4 -colored
b) nonplanar, by 5 -color theorem
c) either, $K_{3,3}$ satisfies this
d) planar, $O G$ is tree or cycle
e) planar, $O G$ cannot contain $K_{3,3}$ or K_{5}

3 Trees and Components

(a) Bob removed a degree 3 node from an n-vertex tree. How many connected components are there in the resulting graph? Please provide an explanation.
(b) Given an n-vertex tree, Bob added 10 edges to it and then Alice removed 5 edges. If the resulting graph has 3 connected components, how many edges must be removed in order to remove all cycles from the resulting graph? Please provide an explanation.
a) 3

After removing as the 3 neighboring vertices are all in different connected components,
b) 7

Graph has $n+4$ edges. To create 3 connected components where each connected component is a tree, there must be n-3 edges.

4 Hypercubes

The vertex set of the n-dimensional hypercube $G=(V, E)$ is given by $V=\{0,1\}^{n}$ (recall that $\{0,1\}^{n}$ denotes the set of all n-bit strings). There is an edge between two vertices x and y if and only if x and y differ in exactly one bit position. These problems will help you understand hypercubes.
(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit strings.

(b) Show that for any $n \geq 1$, the n-dimensional hypercube is bipartite.

$$
\begin{aligned}
& L=\{v \in V \mid v \text { has odd \# of I's in bitstring }\} \\
& R=\{v \in V \mid v \text { has even \# of I's in bitsfring }\}
\end{aligned}
$$

