CS $70 \quad$ Discrete Mathematics and Probability Theory
Spring 2022 Koushik Sen and Satish Rao
DIS 2A

1 Optimal Candidates
In the notes, we proved that the propose-and-reject algorithm always outputs the job-optimal pairing. However, we never explicitly showed why it is guaranteed that putting every job with its optimal candidate results in a pairing at all. Prove by contradiction that no two jobs can have the same optimal candidate. (Note: your proof should not rely on the fact that the propose-and-reject algorithm outputs the job-optimal pairing.)
Suppose jobs J_{1} and J_{2} have the same optimal candidate C where $\left(J_{1}, C\right) \in M_{1}$ and $\left(J_{2}, C\right) \in M_{2}$. WLOG assume C prefers J_{1} to J_{2}. Then $\left(J_{1}, c\right)$ is a rogue couple in M_{2} because J_{1} must prefer C to whoever J_{1} is paired with in M_{2}.

2 Eulerian Tour and Eulerian Walk

(a) Is there an Eulerian tour in the graph above? If no, give justification. If yes, provide an example.

No, vertices 3 and 7 have odd degree.
(b) Is there an Eulerian walk in the graph above? An Eulerian walk is a walk that uses each edge exactly once. If no, give justification. If yes, provide an example.

$$
\begin{aligned}
& \text { Yes. } \\
& 3,2,4,3,1,2,6,8,4,1,7,6,8,7
\end{aligned}
$$

(c) What is the condition that there is an Eulerian walk in an undirected graph? Briefly justify your answer. There are 0 or 2 vertices of odd degree, and the graph is connected (except isolated vertices). [See official solutions for proof.]

3 Not everything is normal: Odd-Degree Vertices
Claim: Let $G=(V, E)$ be an undirected graph. The number of vertices of G that have odd degree is even. Prove the claim above using:
(i) Direct proof (e.g., counting the number of edges in G). Hint: in lecture, we proved that $\sum_{v \in V} \operatorname{deg} v=$ $2|E|$.

$$
\begin{gathered}
\sum_{v \in v} \operatorname{deg} v=2|E| \\
\sum_{v \in v_{0}} \operatorname{deg} v+\sum_{v \in E_{e}} \operatorname{deg} v=2|E|
\end{gathered}
$$

$V_{0}=$ odd degree vertices

$$
V_{e}=\text { even degree vertices }
$$

CS 70, Spring 2022, DIS 2A even + even = even
(ii) Induction on $m=|E|$ (number of edges)

Base Case: $m=0$. No edges, so all vertices have degree 0 .
Induction Hypothesis: Every graph with m edges has an even number of odd-degree vertices.
Inductive Step: Let G be a graph with $m+1$ edges. Remove one edge (u, v) to create G^{\prime}.
By inductive hypothesis, $\left|V_{0}\left(G^{\prime}\right)\right|$ is even.
Now add edge (u, v) back in.

$$
\left|V_{0}(G)\right|= \begin{cases}\left|V_{0}\left(G^{\prime}\right)\right|-2 & \text { if } u, v \in V_{0}\left(G^{\prime}\right) \\ \left|V_{0}\left(G^{\prime}\right)\right| & \text { if } u \in V_{0}\left(G^{\prime}\right), v \notin V_{0}\left(G^{\prime}\right) \\ \left|V_{0}\left(G^{\prime}\right)\right| & \text { if } u \notin V_{0}\left(G^{\prime}\right), v \in V_{0}\left(G^{\prime}\right) \\ \left|V_{0}\left(G^{\prime}\right)\right|+2 & \text { if } u, v \notin V_{0}\left(G^{\prime}\right)\end{cases}
$$

In all cases, $\left|V_{0}(G)\right|$ is even.
(iii) Induction on $n=|V|$ (number of vertices)

Skipped, see official solutions.

4 Coloring Trees
Prove that all trees with at least 2 vertices are bipartite: the vertices can be partitioned into two groups so that every edge goes between the two groups.
[Hint: Use induction on the number of vertices.]
Let $n=|v|$.
Base Case: $n=2$

$$
L=\{u\}, R=\{u\}
$$

Induction Hypothesis: Every tree with k vertices is bipartite.
Inductive Step: Let T be a tree with $k+1$ vertices. Remove a leaf node u and its incident edge (u, v). By $I H$, the resulting tree is bipartite. Now add node u back in. If $v \in L$, then put u in R. If $v \in R$, thea put u in L.

Thus T is also bipartite.

