Announcements

- HW 1 and Vitamin 1 due tomorrow at 4 PM
- In-person discussion will be in Latimer 102
stable matching instance $=$ a set of n jabs and n candidates where each job and candidate has a preference list

Example: \quad| Jobs | Candidates |
| :---: | :--- |
| 1 | $A>B>C$ |
| 2 | $B>C>A$ |
| 3 | $C>A>B$ |

Candidates	Jobs
A	$2>3>1$
B	$3>1>2$
C	$1>2>3$

matching $=$ a set of (J, C) pairs where every job is matched to exactly one candidate and every candidate is matched to exactly one job
Example of a matching: $\{(1, B),(2, A),(3, C)\}$
rogue couple $=a(J, C)$ pair where J prefers C over its currently matched candidate and C prefers J over her currently matched job
Example: In the matching above, $(2, C J$ would be a rogue couple because 2 prefers $C>A$ and C prefers $2>3$.
stable matching = a matching with no rogue couples
Example: In the stable matching instance above, the stable matching are

$$
\begin{aligned}
& M_{1}=\{(1, A),(2, B),(3, C)\} \\
& M_{2}=\{(1, B),(2, C),(3, A)\} \\
& M_{3}=\{(1, C),(2, A),(3, B)\}
\end{aligned}
$$

job-optimal = every job is matched with their best possible candidate in any stable matching
Example: M_{1} is job-optimal, while M_{3} is candidate-optimal.
job-pessimal = every job is matched with their worst possible candidate in any stable matching
Example: M_{1} is candidate-pessimal, while M_{3} is job-pessimal.

Propose-and-Reject / Stable Matching Algorithm
Every morning: Each job proposes to its most-preferred candidate who has not yet rejected this job
Every afternoon: Each candidate puts her most preferred offer on a string and rejects all other jobs
Every night: Each rejected job crosses the candidate off its list.
Repeat until there are no rejections.

Note: The traditional propose-and-reject algorithm involves jobs proposing and candidates rejecting.

When jobs propose, the stable matching is job-optimal.

$$
\begin{aligned}
& \text { job-optimal } \Longleftrightarrow \text { candidate-pessimal } \\
& \text { job-pessimal } \Longleftrightarrow \text { candidate-optimal }
\end{aligned}
$$

If there is only one stable matching, the job-optimal matching and the candidate-optimal matching are the same.

CS 70
Discrete Mathematics and Probability Theory
Spring 2022 Koushik Sen and Satish Rao

1 Stable Matching
Consider the set of jobs $J=\{1,2,3\}$ and the set of candidates $C=\{A, B, C\}$ with the following preferences.

Jobs	Candidates				
1	A	$>$	B	$>\mathrm{C}$	
2	B	$>$	A	$>$	C
3	A	$>$	B	$>\mathrm{C}$	

Candidates	Jobs			
A	$2 \gg 1>3$			
B	$1 \ggg>2$			
C	$1>2>3$			

Run the traditional propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work.)

	Day 1	Day 2	Day 3	Day 4	Day 5
A	(1) 3	(1)	1,2	(2)	(2)
B	(2)	2,3	3	(1), 3	(1)
C					(3)

Final matching: $\{(1, B),(2, A),(3, C)\}$ 2 Propose-and-Reject Proofs

Prove the following statements about the traditional propose-and-reject algorithm.
(a) In any execution of the algorithm, if a candidate receives a proposal on day i, then she receives some proposal on every day thereafter until termination.
For any day $k \geqslant i$, if a candidate gets a proposal on day k, then she will accept one and then that job will propose again on day $k+1$. By induction, she will receive a proposal on every day after i.
(b) In any execution of the algorithm, if a candidate receives no proposal on day i, then she receives no proposal on any previous day $j, 1 \leq j<i$.
If a candidate receives a proposal on day j, then she will also receive a proposal on day i by part lad. Thus proven by contraposition.
(c) In any execution of the algorithm, there is at least one candidate who only receives a single proposal. (Hint: use the parts above!)
Let k be the last day. There must be at least one
candidate who did not receive a proposal on day $k-1$, otherwise the algorithm would have ended earlier. By part (b), this candidate who did not receive a proposal on day $k-1$ also did not receive any proposals earlier, so they 3 Be a Judge only received a single proposal on day k.

By stable matching instance, we mean a set of jobs and candidates and their preference lists. For each of the following statements, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:
(a) There is a stable matching instance for n jobs and n candidates for $n>1$, such that in a stable matching algorithm with jobs proposing, every job ends up with its least preferred candidate.
False. This would require every job being rejected $n-1$ times and every candidate rejecting $n-1$ jobs, but this is impossible by question 2 .
(b) In a stable matching instance, if job J and candidate C each put each other at the top of their respective preference lists, then J must be paired with C in every stable pairing.
True. If J is not paired with C, then (J, C) would be a rogue couple, so the matching is not stable.
(c) In a stable matching instance with at least two jobs and two candidates, if job J and candidate C each put each other at the bottom of their respective preference lists, then J cannot be paired with C in any stable pairing.
False.

1	$A>B$
2	$A>B$

A	$1>2$
B	$1>2$

$\{(1, A),(2, B)\}$ is a stable matching where
CS 70, Spring 2022, DIS 1B 2 and B are paired despite being at the 2 bottom of each other's preferences.
(d) For every $n>1$, there is a stable matching instance for n jobs and n candidates which has an unstable pairing where every unmatched job-candidate pair is a rogue couple or pairing.
True. If we match every job with its least-preferred candidate and every candidate with her least-preferred job, then every unmatched pain is a rogue couple.

