Proof By Induction

To prove a proposition P(n) for all n & N by induction, your proof needs 3 parts.

- 1, Base Case: Prove P(0).
- 2. Induction Hypothesis: Assume P(k) for some k≥0.
- 3. Inductive Step: Prove P(k) ⇒ P(k+1).

CS 70Discrete Mathematics and Probability TheorySpring 2022Koushik Sen and Satish RaoDIS 1A

1 Natural Induction on Inequality

Prove that if $n \in \mathbb{N}$ and x > 0, then $(1 + x)^n \ge 1 + nx$.

Base Case:
$$(l+x)^{\circ} = |$$
 $| \ge |$
 $l+0x = |$
Induction Hypothesis: $(l+x)^{k} \ge |+kx$ for some keN
Inductive Step: $(l+x)^{k+1} = (l+x)(l+x)^{k}$
 $\ge (l+x)(l+x)$
2 Make It Stronger
 $\ge l+kx+x+kx^{2}$
 $\ge l+(k+1)x$

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

 $a_n \leq 3^{(2^n)}$

for every positive integer *n*.

- (a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_n \leq 3^{(2^n)}$? Attempt an induction proof with this hypothesis to show why this does not work. Inductive Step: $a_k \leq 3^{(2^k)} \Rightarrow a_{k+1} \leq 3^{(2^{k+1})}$
 - Enductive Step: $a_{k} \leq 3^{(2)} \implies a_{k+1} \leq 3^{(2')}$ $a_{k+1} = 3 a_{k}^{2} \leq 3 (3^{2^{k}})^{2} = 3 (3^{2^{k+1}})$ We cannot prove $a_{k+1} \leq 3^{(2^{k+1})}$.

(b) Try to instead prove the statement $a_n \leq 3^{(2^n-1)}$ using induction. Base Case: $a_i = 1 \leq 3^{2^i-1} = 3$

Base Case: $a_1 = 1 \le 3^{2^{-1}} = 3$ Induction Hypothesis: $a_k \le 3^{(2^{k}-1)}$ for some $k \in \mathbb{N}$ Inductive Step: $a_{k+1} = 3a_k^2 \le 3(3^{(2^{k}-1)})^2 = 3(3^{2^{k+1}-2}) = 3^{2^{k+1}-1}$

(c) Why does the hypothesis in part (b) imply the overall claim?

$$a_n \leq 3^{(2^n-1)}$$
 is a stronger statement,
since if $a_n \leq 3^{(2^n-1)}$ and $3^{(2^n-1)} \leq 3^{(2^n)}$, then $a \leq 3^{(2^n)}$
 $CS 70, Spring 2022, DIS 1A$ by transitive property.

1

3 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0,$$

where $k \in \mathbb{N}$ and $c_i \in \{0, 1\}$ for all $i \leq k$.

Base Case: When
$$n=0$$
, we have $n=0\cdot 2^{\circ}$.
Induction Hypothesis: Assume every $l \le m \le n$ can be written in binary.
Inductive Step: Prove $n+l$ can be written in binary.
If $n+l$ is even, then multiply both sides of $\frac{n+l}{2} = c_k \cdot 2^k + \dots + c_o \cdot 2^{\circ}$
to get $n+l = c_k \cdot 2^{k+l} + \dots + c_o \cdot 2^l + 0 \cdot 2^{\circ}$.
If $n+l$ is odd, then let $n = c_k \cdot 2^k + \dots + c_o \cdot 2^{\circ}$. Since n is even,
then c_o must be 0, otherwise RHS is odd. Thus, we can let
Fibonacci for Home

Recall, the Fibonacci numbers, defined recursively as

$$F_1 = 1, F_2 = 1$$
, and $F_n = F_{n-2} + F_{n-1}$.

4

Prove that every third Fibonacci number is even. For example, $F_3 = 2$ is even and $F_6 = 8$ is even.

Base Case: $F_3 = 2$ is even. Induction Hypothesis: $F_{3k} = 2q$ for some $q \in \mathbb{Z}$. Inductive Step: $F_{3k+3} = F_{3k+1} + F_{3k+2}$ $= F_{3k+1} + (F_{3k} + F_{3k+1})$ $= 2F_{3k+1} + F_{3k}$ $= 2F_{3k+1} + 2q$ $= 2(F_{3k+1} + q)$

CS 70, Spring 2022, DIS 1A