Proof By Induction
To prove a proposition $P(n)$ for all $n \in \mathbb{N}$ by induction, your proof needs 3 parts.

1. Base Case: Prove $P(0)$.
2. Induction Hypothesis: Assume $P(k)$ for some $k \geq 0$.
3. Inductive Step: Prove $P(k) \Rightarrow P(k+1)$.

CS $70 \quad$ Discrete Mathematics and Probability Theory
Spring 2022 Koushik Sen and Satish Rao
1 Natural Induction on Inequality
Prove that if $n \in \mathbb{N}$ and $x>0$, then $(1+x)^{n} \geq 1+n x$.
Base Case: $\begin{array}{ll}(1+x)^{0}=1 \\ 1+0 x & =1\end{array} \quad 1 \geq 1$
DIS AA
$1+0 x=1$
Induction Hypothesis: $(1+x)^{k} \geq 1+k_{x}$ for some $k \in \mathbb{N}$
Inductive Step: $(1+x)^{k+1}=(1+x)(1+x)^{k}$

$$
\begin{aligned}
&(1+x)^{k+1}=(1+x)(1+x)^{k} \\
& \geq(1+x)(1+k x) \\
& \geq 1+k x+x+k x^{2} \\
& \geq 1+(k+1) x
\end{aligned}
$$

2 Make It Stronger
Suppose that the sequence a_{1}, a_{2}, \ldots is defined by $a_{1}=1$ and $a_{n+1}=3 a_{n}^{2}$ for $n \geq 1$. We want to prove that

$$
a_{n} \leq 3^{\left(2^{n}\right)}
$$

for every positive integer n.
(a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_{n} \leq 3^{\left(2^{n}\right)}$? Attempt an induction proof with this hypothesis to show why this does not work.
Inductive Step: $a_{k} \leq 3^{\left(2^{k}\right)} \Rightarrow a_{k+1} \leq 3^{\left(2^{k+1}\right)}$

$$
a_{k+1}=3 a_{k}^{2} \leq 3\left(3^{2^{k}}\right)^{2}=3\left(3^{2^{k+1}}\right)
$$

We cannot prove $a_{k+1} \leqslant 3^{\left(2^{k+1}\right)}$.
(b) Try to instead prove the statement $a_{n} \leq 3^{\left(2^{n}-1\right)}$ using induction.

Base Case: $\quad a_{1}=1 \leqslant 3^{2^{\prime-1}}=3$
Induction Hypothesis: $a_{k} \leq 3^{\left(2^{k}-1\right)}$ for some $k \in \mathbb{N}$
Inductive Step: $a_{k+1}=3 a_{k}^{2} \leq 3\left(3^{\left(2^{k}-1\right)}\right)^{2}=3\left(3^{2^{k+1}-2}\right)=3^{2^{k+1}-1}$
(c) Why does the hypothesis in part (b) imply the overall claim?
$a_{n} \leq 3^{\left(2^{n}-1\right)}$ is a stronger statement,
since if $a_{n} \leq 3^{\left(2^{n}-1\right)}$ and $3^{\left(2^{n}-1\right)} \leq 3^{\left(2^{n}\right)}$, then $a \leq 3^{\left(2^{n}\right)}$
CS 70, Spring 2022, DIS 1A

3 Binary Numbers
Prove that every positive integer n can be written in binary. In other words, prove that we can write

$$
n=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

where $k \in \mathbb{N}$ and $c_{i} \in\{0,1\}$ for all $i \leq k$.
Base Case: When $n=0$, we have $n=0.2^{\circ}$.
Induction Hypothesis: Assume every $1 \leq m \leq n$ can be written in binary.
Inductive Step: Prove $n+1$ can be written in binary.
If $n+1$ is even, then multiply both sides of $\frac{n+1}{2}=c_{k} \cdot 2^{k}+\ldots+c_{0} \cdot 2^{0}$ to get $n+1=c_{k} \cdot 2^{k+1}+\ldots+c_{0} \cdot 2^{1}+0 \cdot 2^{0}$.

If $n+1$ is odd, then let $n=c_{k} \cdot 2^{k}+\ldots+c_{0} \cdot 2^{0}$. Since n is even, then c_{0} must be 0 , otherwise RHS is odd. Thus, we can let 4 Fibonacci for Home ${ }^{n+1}=c_{k} \cdot 2^{k}+\ldots+c_{1} \cdot 2^{1}+1 \cdot 2^{0}$.

Recall, the Fibonacci numbers, defined recursively as
$F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-2}+F_{n-1}$.
Prove that every third Fibonacci number is even. For example, $F_{3}=2$ is even and $F_{6}=8$ is even.
Base Case: $F_{3}=2$ is even.
Induction Hypothesis: $F_{3 k}=2 q$ for some $q \in \mathbb{Z}$.
Inductive Step:

$$
\begin{aligned}
F_{3 k+3} & =F_{3 k+1}+F_{3 k+2} \\
& =F_{3 k+1}+\left(F_{3 k}+F_{3 k+1}\right) \\
& =2 F_{3 k+1}+F_{3 k} \\
& =2 F_{3 k+1}+2 q \\
& =2\left(F_{3 k+1}+q\right)
\end{aligned}
$$

