Continuous Distributions
probability density function (PDF): a function $f(x)$ representing the "probability per unit length" of a continuous random variable X

$$
P[a \leq X \leq b]=\int_{a}^{b} f(x) d x \quad \text { for all } a \leq b
$$

A valid PDF satisfies:

1. $f(x) \geqslant 0$ for all $x \in \mathbb{R}$
2. $\int_{-\infty}^{\infty} f(x) d x=1$
cumulative distribution function $(C D F)=F(x)=P[X \leqslant x]$

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{x} f(z) d z \\
& f(x)=\frac{d}{d x} F(x)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[x] & =\int_{-\infty}^{\infty} x f(x) d x \\
\operatorname{Var}(x] & =\mathbb{E}\left[x^{2}\right]-E[x]^{2} \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\left(\int_{-\infty}^{\infty} x f(x) d x\right)^{2}
\end{aligned}
$$

Joint Distributions
Joint density function: $f(x, y)$
$P[a \leq X \leq b, c \leq Y \leq d]=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$ for all $a \leq b$ and $c \leq d$

1. $f(x, y) \geqslant 0$ for all $x, y \in \mathbb{R}$
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$

1 Continuous Intro
(a) Is

$$
f(x)= \begin{cases}2 x, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

a valid density function? Why or why not? Is it a valid CDF? Why or why not?
Yes, valid PDF: $\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 2 x d x=\left.x^{2}\right|_{0} ^{1}=1 \quad$ Not a valid $C D F$.
(b) Calculate $\mathbb{E}[X]$ and $\operatorname{Var}(X)$ for X with the density function

$$
\begin{aligned}
& \mathbb{E}[X]=\int_{0}^{l} \frac{x}{l} d x=\left.\frac{1}{2 l} x^{2}\right|_{0} ^{l}=\frac{l}{2} \quad f(x)=\begin{array}{ll}
\frac{1}{l}, & 0 \leq x \leq \ell, \\
0, & \text { otherwise. }
\end{array} \quad \begin{aligned}
& \quad \operatorname{Var}(x)=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2} \\
& \mathbb{E}\left[X^{2}\right]=\int_{0}^{l} \frac{x^{2}}{l} d x=\left.\frac{1}{3 l} x^{3}\right|_{0} ^{l}=\frac{l^{2}}{3}=\frac{l^{2}}{3}-\left(\frac{l}{2}\right)^{2}=\frac{l^{2}}{12}
\end{aligned} \\
& \text { (c) Suppose } X \text { and } Y \text { are independent and have densities }
\end{aligned}
$$

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}2 x, & 0 \leq x \leq 1, \\
0, & \text { otherwise },\end{cases} \\
& f_{Y}(y)= \begin{cases}1, & 0 \leq y \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

What is their joint distribution? (Hint: for this part and the next, we can use independence in much the same way that we did in discrete probability)

$$
\begin{aligned}
f_{x, y}(x, y) & =f_{X}(x) f_{y}(y) \\
& = \begin{cases}2 x & 0 \leqslant x \leqslant 1 \text { and } 0 \leqslant y \leqslant 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(d) Calculate $\mathbb{E}[X Y]$ for the above X and Y.

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2 x^{2} y d x d y \\
& =\int_{0}^{1}\left(\left.\frac{2}{3} x^{3} y\right|_{x=0} ^{x=1}\right) d y=\int_{0}^{1} \frac{2}{3} y d y=\left.\frac{1}{3} y^{2}\right|_{y=0} ^{y=1}=\frac{1}{3}
\end{aligned}
$$

2 Uniform Distribution

You have two fidget spinners, each having a circumference of 10 . You mark one point on each spinner as a needle and place each of them at the center of a circle with values in the range $[0,10)$ marked on the circumference. If you spin both (independently) and let X be the position of the first spinner's mark and Y be the position of the second spinner's mark, what is the probability that $X \geq 5$, given that $Y \geq X$?

$$
\begin{aligned}
P[x \geq 5 \mid Y \geq x] & =\frac{P[x \geq 5 \cap Y \geq x]}{P[\gamma \geq x]} \\
& =\frac{\frac{1}{8}}{\frac{1}{2}} \\
& =\frac{1}{4}
\end{aligned}
$$

3 Darts Again
Edward and Khalil are playing darts on a circular dartboard.
Edward's throws are uniformly distributed over the entire dartboard, which has a radius of 10 inches. Khalid has good aim; the distance of his throws from the center of the dartboard follows an exponential distribution with parameter $\frac{1}{2}$.
Say that Edward and Khalil both throw one dart at the dartboard. Let X be the distance of Edward's dart from the center, and Y be the distance of Khalil's dart from the center of the dartboard. What is $\mathbb{P}[X<Y]$, the probability that Edward's throw is closer to the center of the board than Khalil's? Leave your answer in terms of an unevaluated integral.
[Hint: X is not uniform over $[0,10]$. Solve for the distribution of X by first computing the CDF of X, $\mathbb{P}[X<x]$.]

$$
\begin{aligned}
& P[X \leqslant x]=\frac{\text { Area of } O}{\text { Area of dartboard }} \\
&=\frac{\pi x^{2}}{\pi(10)^{2}}=\frac{x^{2}}{100} \\
& \begin{aligned}
f_{x}(x) & =\frac{d}{d x}\left(\frac{x^{2}}{100}\right) \\
& =\frac{1}{50} x \\
P[X<Y] & =\int_{0}^{10} P[X<Y \mid x=x] f_{x}(x) d x \\
& =\int_{0}^{10} P[Y>x] f_{x}(x) d x \\
& =\int_{0}^{10} e^{-0.5 x} \frac{x}{50} d x \\
& =\int_{0}^{10} \frac{1}{50} x e^{-0.5 x} d x \approx
\end{aligned}>0.0767
\end{aligned}
$$

