Conditional Expectation
Let X be a random variable and A be an event.

$$
\begin{aligned}
& E[X]=\sum_{x} x P[X=x] \\
& E[X \mid A]=\sum_{x} x P[X=x \mid A]
\end{aligned}
$$

Often, the event A will use some other random variable Y.

$$
E[X \mid Y=y]=\sum_{x} x P[X=x \mid Y=y]
$$

Let $f(y)=E[X \mid Y=y]$ be a function of y.
The function f is the minimum mean square estimate (MMSE) of X. $E[X \mid Y]=f(Y)$ is a random variable (because it is a function of y).

Law of Total/Iterated Expectation

$$
\begin{aligned}
& E[X]=E[E[X \mid Y]] \\
& E[X]=\sum_{y} E[X \mid Y=y] P[Y=y]
\end{aligned}
$$

Linear Least Squares Estimate (LLSE)

$$
L(Y \mid X)=E[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-E[X])
$$

1 LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag A are $2 / 3$ and $1 / 3$ respectively. The fractions of red balls and blue balls in bag B are $1 / 2$ and $1 / 2$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. You then draw 6 balls from that same bag with replacement. Let X_{i} be the indicator random variable that ball i is red. Now, let us define $X=\sum_{1 \leq i \leq 3} X_{i}$ and $Y=\sum_{4 \leq i \leq 6} X_{i}$.
(a) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
(b) Compute $\operatorname{Var}(X)$.
(c) Compute $\operatorname{cov}(X, Y)$. (Hint: Recall that covariance is bilinear.)
(d) Now, we are going to try and predict Y from a value of X. Compute $L(Y \mid X)$, the best linear estimator of Y given X. (Hint: Recall that

$$
L(Y \mid X)=\mathbb{E}[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

)
a) $E[x]=E\left[x_{1}+X_{2}+X_{3}\right]=E\left[x_{1}\right]+E\left[x_{2}\right]+E\left[x_{3}\right]$

$$
E\left[X_{i}\right]=\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2}=\frac{7}{12}
$$

$$
E[x]=\frac{7}{12}+\frac{7}{12}+\frac{7}{12}=\frac{7}{4}
$$

$$
E[Y]=\frac{7}{4}
$$

b) $\operatorname{Var}(X)=E\left[x^{2}\right]-E[x]^{2}=E\left[\left(x_{1}+x_{2}+x_{3}\right)^{2}\right]-\left(\frac{7}{4}\right)^{2}$

$$
E\left[x^{2}\right]=E\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}\right]
$$

$$
E\left[X_{1} X_{2}\right]=P\left[X_{1}=1, X_{2}=1\right]=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{25}{72}
$$

$$
E\left[x^{2}\right]=E\left[x_{1}^{2}\right]+E\left[x_{2}^{2}\right]+E\left[x_{3}^{2}\right]+2 E\left[x_{1} x_{2}\right]+2 E\left[x_{1} x_{3}\right]+2 E\left[x_{2} x_{3}\right]
$$

$$
=\frac{7}{12}+\frac{7}{12}+\frac{7}{12}+2\left(\frac{25}{72}\right)+2\left(\frac{25}{72}\right)+2\left(\frac{25}{72}\right)=\frac{37}{48}
$$

c) $\operatorname{Cov}(X, y)=E[X y]-E[x] E[y]=E\left[\left(x_{1}+x_{2}+x_{1}\right]\left(x_{4}+x_{5}+x_{6}\right)\right]-\frac{7}{4} \cdot \frac{7}{4}$

$$
=9\left(\frac{25}{72}\right)-\frac{49}{16}=\frac{1}{16}
$$

2 Number Game

$$
\text { d) } L(Y \mid X)=\frac{7}{4}+\frac{3}{37}\left(X-\frac{7}{4}\right)=\frac{3}{37} X+\frac{119}{74}
$$

Sinho and Vrettos are playing a game where they each choose an integer uniformly at random from $[0,100]$, then whoever has the larger number wins (in the event of a tie, they replay). However, Vrettos doesn't like
losing, so he's rigged his random number generator such that it instead picks randomly from the integers between Sinho's number and 100. Let S be Sinho's number and V be Vrettos' number.
(a) What is $\mathbb{E}[S]$?

$$
E[S]=\frac{0+100}{2}=50
$$

(b) What is $\mathbb{E}[V \mid S=s]$, where s is any constant such that $0 \leq s \leq 100$?

$$
E[V \mid s=s]=\frac{s+100}{2}
$$

(c) What is $\mathbb{E}[V]$?

$$
\begin{aligned}
E[V] & =\sum_{s=0}^{100} P[S=s] E[V \mid S=s] \\
& =\sum_{s=0}^{100} \frac{1}{101} \frac{s+100}{2} \\
& =\frac{1}{202} \sum_{s=0}^{100}(s+100) \\
& =\frac{101 \cdot 50+101 \cdot 100}{202} \\
& =75
\end{aligned}
$$

3 Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation.
(a) If we roll a die until we see a 6 , how many ones should we expect to see?
(b) If we roll a die until we see a number greater than 3 , how many ones should we expect to see?
(Hint: for both of the above subparts, the Law of Total Expectation may be helpful)
$X=$ number of total rolls
$Y=$ number of 1 's
a) $E[Y]=E[E[Y \mid X]]$
$=E\left[\frac{1}{5}(x-1)\right]$
$=\frac{1}{s}(E[x]-1)$
$=1$

4 Marbles in a Bag

$x \sim$ Geometric $\left(\frac{1}{6}\right)$
$Y \left\lvert\, X \sim \operatorname{Binomial}\left(x-1, \frac{1}{5}\right)\right.$
b) $E[Y]=E[E[Y \mid X]]$
$=E\left[\frac{1}{3}(x-1)\right]$
$=\frac{1}{3}(E[x]-1)$
$=\frac{1}{3}(2-1)=\frac{1}{3}$

We have r red marbles, b blue marbles, and g green marbles in the same bag. If we sample marbles with replacement until we get 3 red marbles (not necessarily consecutively), how many blue marbles should we expect to see? (Hint: It might be useful to use Law of Total Expectation, $E(Y)=E(E(Y \mid X))$.)

$$
\begin{aligned}
& X=\text { number of samples until we get } 3 \text { red marbles } \\
& Y
\end{aligned}=\text { number of blue marbles } \quad \begin{aligned}
& X=X_{1}+X_{2}+X_{3} \quad X_{i} \sim \text { Geometric }\left(\frac{r}{r+g+b}\right) \\
& E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+E\left[X_{3}\right]=3\left(\frac{r+g+b}{r}\right) \\
& E[Y \mid X]=\frac{b}{b+g}(X-3] \\
& E[Y]=E[E[Y \mid X]] \\
&=E\left[\frac{6}{b+g}(X-3)\right] \\
&=\frac{b}{b+g}(E[X]-3) \\
&=\frac{b}{b+g}\left(\frac{3(r+g+b)}{r}-3\right)=\frac{3 b}{r}
\end{aligned}
$$

