- Fill out Midsemester Survey!

Markov's Inequality: For a nonnegative RV X,

$$
P[X \geq c] \leqslant \frac{E[x]}{c}
$$

Chebyshev's Inequality: $\quad P[|X-\mu| \geq c] \leqslant \frac{\operatorname{Var}(X)}{c^{2}}$

CS $70 \quad$ Discrete Mathematics and Probability Theory
Spring 2022 Koushik Sen and Satish Rao

1 Inequality Practice
(a) X is a random variable such that $X \geq-5$ and $\mathbb{E}[X]=-3$. Find an upper bound for the probability of X being greater than or equal to -1 .

$$
\begin{aligned}
& Y=X+5 \\
& P[X \geq-1]=P[Y \geq 4] \leqslant \frac{E[Y]}{4}=\frac{E[X+5]}{4}=\frac{1}{2} \\
& P[X \geq-1] \leqslant \frac{1}{2}
\end{aligned}
$$

(b) Y is a random variable such that $Y \leq 10$ and $\mathbb{E}[Y]=1$. Find an upper bound for the probability of Y being less than or equal to -1 .

$$
\begin{aligned}
& Z=10-Y \\
& E[Z]=10-1=9 \\
& P[Y \leqslant-1]=P[Z \geq 11] \leqslant \frac{E[2]}{11}=\frac{9}{11}
\end{aligned}
$$

(c) You roll a die 100 times. Let Z be the sum of the numbers that appear on the die throughout the 100 rolls. Compute $\operatorname{Var}(Z)$. Then use Chebyshev's inequality to bound the probability of the sum Z being greater than 400 or less than 300.

$$
E\left[X_{i}\right]=\frac{7}{2}
$$

$$
\begin{aligned}
& Z=X_{1}+x_{2}+\ldots+X_{100} \quad \operatorname{Var}\left(x_{i}\right)=\frac{35}{12} \\
& \operatorname{Var}(Z)=100 \cdot \frac{35}{12} \\
& P[|z-350| \geq 50] \leq \frac{100\left(\frac{35}{12}\right)}{50^{2}}=\frac{7}{60}
\end{aligned}
$$

2 Vegas
On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads on both sides. You want to estimate p with the following experiment: you pick a random sample of n people and ask each one to flip their coin. Assume that each person is independently likely to carry a fair or a trick coin.
(a) Let X be the proportion of people whose coin flip results in heads. Find $\mathbb{E}[X]$.

$$
\begin{aligned}
& X=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right) \quad X_{i}= \begin{cases}1 & \text { if ith person flips heads } \\
0 & \text { otherwise }\end{cases} \\
& E\left[X_{i}\right]=p+(1-p) \frac{1}{2}=\frac{1}{2}+\frac{1}{2} p \\
& E[X]=\frac{1}{n} \cdot n \cdot \frac{1}{2}(1+p) \\
&=\frac{1}{2}(1+p)
\end{aligned}
$$

(b) Given the results of your experiment, how should you estimate p ? (Hint: Construct an unbiased astimotor for p using part (a))

$$
\begin{aligned}
E[x] & =\frac{1}{2}(1+p) \\
2 E[x] & =1+p \\
\rho & =2 E[x]-1 \\
\hat{\rho} & =2 x-1
\end{aligned}
$$

(c) How many people do you need to ask to be 95% sure that your answer is off by at most 0.05 ?

$$
\begin{aligned}
\operatorname{Var}(x) & =\operatorname{Var}\left(\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)\right) \\
& =\frac{1}{n^{2}}\left(\operatorname{Var}\left(x_{1}\right)+\ldots+\operatorname{Var}\left(x_{n}\right)\right) \quad \operatorname{Var}\left(x_{i}\right) \leq \frac{1}{4} \\
& \leq \frac{1}{4 n} \\
\operatorname{Var}(\hat{\rho}) & =\operatorname{Var}(2 x-1)=4 \operatorname{Var}(x)
\end{aligned} \begin{aligned}
& P[|\hat{\rho}-\rho| \geqslant 0.05] \leq \frac{1}{n} \\
& 0.05^{2} \leq 1-0.95 \\
& \operatorname{Var}(\hat{\rho}) \leq 0.05^{3} \\
& \frac{1}{n} \leq 0.05^{3} \\
& n \geq 8000
\end{aligned}
$$

3 Working with the Law of Large Numbers

(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

10 tosses

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

100 tosses

(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

```
100 tosses
```

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

10 tosses

