Poisson Distribution

$$
\begin{aligned}
& X \sim \operatorname{Pois}(\lambda) \\
& P[X=k]=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad E[x]=\lambda \quad \operatorname{Var}(x)=\lambda
\end{aligned}
$$

Notice that $\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}=1$.

Variance
-measures how "spread out" a random variable - expected squared distance from mean

$$
\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]=E\left[x^{2}\right]-E[x]^{2}
$$

Properties of Variance:

$$
\begin{aligned}
& \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X) \\
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { if } X \text { and } Y \text { are independent }
\end{aligned}
$$

Covariance

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{k}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-E[X] E[Y]
$$

Properties of Covariance:

1. $\operatorname{Cov}(x, x)=\operatorname{Var}(X)$
2. If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.
3. $\operatorname{Cov}(a X+b Y, Z)=a \operatorname{Cov}(X, Z)+b \operatorname{Cov}(Y, Z)$
4. $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$

$$
\operatorname{Corr}(x, y)=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

Common Discrete Random Variable Distributions

Distribution	Possible Values	$P[x=k]$	$E[x]$	$\operatorname{Var}(x)$
Uniform $\{a, \ldots, b\}$	$\{a, a+1, \ldots, b\}$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^{2}-1}{12}$
Bernoulli (ρ)	$\{0,1\}$	$\left\{\begin{array}{c}1-p \text { if } k=0 \\ p \\ \text { if } k=1\end{array}\right.$	p	$p(1-p)$
Binomial (n, p)	$\{0,1, \ldots, n\}$	$\binom{n}{k} p^{k}(1-\rho)^{n-k}$	$n p$	$n p(1-p)$
Geometric (p)	$\{1,2, \ldots\}$	$(1-\rho)^{k-1} p$	$\frac{1}{\rho}$	$\frac{1-p}{p^{2}}$
Poisson (λ)	$\{0,1,2, \ldots\}$	$\frac{\lambda^{k}}{k!} e^{-\lambda}$	λ	λ
Hypergeometric (N, B, n)	$\{0, \ldots$, min $(n, B)\}$	$\frac{\binom{B}{k}\binom{N-\beta}{n-k}}{\binom{N}{n}}$	$n \frac{B}{N}$	$n \frac{B}{N} \frac{N-B}{N} \frac{N-n}{N-1}$

CS $70 \quad$ Discrete Mathematics and Probability Theory
Spring 2022 Koushik Sen and Satish Roo

1 Sum of Poisson Variables
Assume that you were given two independent Poisson random variables X_{1}, X_{2}. Assume that the first has mean λ_{1} and the second has mean λ_{2}. Prove that $X_{1}+X_{2}$ is a Poisson random variable with mean $\lambda_{1}+\lambda_{2}$.
Hint: Recall the binomial theorem.

$$
\begin{aligned}
& \boldsymbol{X}_{\mathbf{1}} \sim \operatorname{Poisson}\left(\boldsymbol{\lambda}_{\mathbf{1}}\right), \quad \mathbf{X}_{\mathbf{2}} \sim \operatorname{Poisson}\left(\boldsymbol{\lambda}_{\mathbf{2}}\right) \quad(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& y=x_{1}+x_{2} \\
& P[Y=n]=\sum_{k=0}^{n} P\left[X_{1}=k, X_{2}=n-k\right] \\
& =\sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}} \\
& =\frac{e^{-\lambda_{1}} e^{-\lambda_{2}}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}=\frac{e^{-\lambda_{1}-\lambda_{2}}}{n!} \sum_{k=0}^{n}\binom{n}{k} \lambda_{1}^{k} \lambda_{2}^{n-k}=\frac{e^{-\lambda_{1}-\lambda_{2}}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n} \\
& Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right) \\
& 2 \text { Variance }
\end{aligned}
$$

(a) Let X be a random variable representing the outcome of the roll of one fair 6-sided die. What is $\operatorname{Var}(X)$?

$$
\begin{array}{rlrl}
\operatorname{Var}(x) & =E\left[x^{2}\right]-E[x]^{2} & E(x]=\frac{1}{6}(1+2+3+4+5+6)=\frac{7}{2} \\
E\left[x^{2}\right] & =\frac{1}{6}\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) \\
& =\frac{91}{6} \quad \operatorname{Var}(x)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
\end{array}
$$

(b) Let Z be a random variable representing the average of n rolls of a fair die 6 -sided die. What is $\operatorname{Var}(Z)$?

$$
\begin{aligned}
Z & =\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right) \\
\operatorname{Var}(Z) & =\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right) \\
& =\frac{1}{n^{2}}\left(\frac{35}{12}+\ldots+\frac{35}{12}\right) \\
& =\frac{1}{n^{2}}\left(\frac{35}{12} n\right) \\
& =\frac{35}{12 n}
\end{aligned}
$$

3 Covariance

(a) We have a bag of 5 red and 5 blue balls. We take two balls uniformly at random from the bag without replacement. Let X_{1} and X_{2} be indicator random variables for the events of the first and second ball being red, respectively. What is $\operatorname{cov}\left(X_{1}, X_{2}\right)$? Recall that $\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.

$$
\begin{aligned}
& E\left[x_{1}\right]=P\left[x_{1}=1\right]=\frac{1}{2} \\
& E\left[x_{2}\right]=P\left[x_{2}=1\right]=\frac{1}{2} \cdot \frac{4}{9}+\frac{1}{2} \cdot \frac{5}{9}=\frac{1}{2} \\
& E\left[x_{1} x_{2}\right]=P\left[x_{1}=1, x_{2}=1\right]=\frac{1}{2} \cdot \frac{4}{9}=\frac{2}{9} \\
& \operatorname{Cov}\left(x_{1}, x_{2}\right)=E\left[x_{1} x_{2}\right]-E\left[x_{1}\right] E\left[x_{2}\right] \\
&=\frac{2}{9}-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \\
&=-\frac{1}{36}
\end{aligned}
$$

(b) Now, we have two bags A and B, with 5 red and 5 blue balls each. Draw a ball uniformly at random from A, record its color, and then place it in B. Then draw a ball uniformly at random from B and record its color. Let X_{1} and X_{2} be indicator random variables for the events of the first and second draws being red, respectively. What is $\operatorname{cov}\left(X_{1}, X_{2}\right)$?

$$
\begin{aligned}
& E\left[x_{1}\right]=\frac{1}{2} \\
& E\left[x_{2}\right]=\frac{1}{2} \cdot \frac{6}{11}+\frac{1}{2} \cdot \frac{5}{11}=\frac{1}{2} \\
& E\left[x_{1} x_{2}\right]=P\left[x_{1}=1, X_{2}=1\right]=\frac{1}{2} \cdot \frac{6}{11}=\frac{3}{11} \\
& \operatorname{Cov}\left(X_{1}, x_{2}\right)=\frac{3}{11}-\left(\frac{1}{2}\right]\left(\frac{1}{2}\right)=\frac{1}{44}
\end{aligned}
$$

