Poisson Distribution

$$\chi \sim Pois(\lambda)$$

 $P[\chi = k] = \frac{\lambda^{k}}{k!} e^{-\lambda}$ $E[\chi] = \lambda$ $Var(\chi) = \lambda$
Notice that $\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} = 1$.

Variance

-measures how "spread out" a random variable
- expected squared distance from mean

$$Var(X) = E[(X-\mu)^2] = E[X^2] - E[X]^2$$

Properties of Variance:

$$Var(cX) = c^2 Var(X)$$

 $Var(X+Y) = Var(X) + Var(Y)$ if X and Y are independent

Covariance

$$C_{ov}(X, Y) = E[(X - \mu_x)(Y - \mu_y)] = E[XY] - E[X]E[Y]$$

Properties of Guariance: 1. Cov(X, X) = Var(X)2. If X and Y are independent, then Cov(X,Y) = 0. 3. Cou(aX + bY, Z) = aCou(X, Z) + bCou(Y, Z)4. Var(X+Y) = Var(X) + Var(Y) + 2Cou(X, Y)

$$Corr(X, Y) = \frac{Cov(X, Y)}{O_X O_Y}$$

Common Discrete Random Variable Distributions

Distribution	Possible Values	٩[X = ۴]	E[x]	Var(X)
Uniform{a,,b}	{a, a+1,, b}	<u> </u> b-a+1	<u>a+b</u> 2	<u>(b-a+1)²-1</u> 12
Bernoulli(p)	{0, 1}	{ -p if k=D p if k=1	P	p(I-p)
Binomial(n, p)	{0,1,,n}	(n) p ^k (1-p) ^{n-k}	Λp	np(I-p)
Geometric(p)	{I, 2,}	م ۱-۳(م-۱)	<u> </u> P	<u>۱~م</u> ۶
Poisson(2)	{ 0, 1, 2,}	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
Hypergeometric(N, B, n)	{0,,min(n,B)}	$\frac{\binom{B}{\binom{N-B}{n-k}}}{\binom{N}{n}}$	n <u>B</u>	∩ <u>B</u> <u>N−B</u> <u>N−n</u> N N N−1

CS 70 Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rao DIS 11A

1 Sum of Poisson Variables

Assume that you were given two independent Poisson random variables X_1, X_2 . Assume that the first has mean λ_1 and the second has mean λ_2 . Prove that $X_1 + X_2$ is a Poisson random variable with mean $\lambda_1 + \lambda_2$. *Hint*: Recall the binomial theorem.

$$X_{i} \sim \text{Poisson}(\lambda_{i}), \quad X_{2} \sim \text{Poisson}(\lambda_{2}) \qquad (x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}$$

$$Y = X_{i} + X_{2}$$

$$P[Y = n] = \sum_{k=0}^{n} P[X_{i} = k, \quad X_{2} = n-k]$$

$$= \sum_{k=0}^{n} \frac{\lambda_{i}^{k}}{k!} e^{-\lambda_{i}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}}$$

$$= \frac{e^{-\lambda_{i}} e^{-\lambda_{2}}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{i}^{k} \lambda_{2}^{n-k} = \frac{e^{-\lambda_{i}-\lambda_{2}}}{n!} \sum_{k=0}^{n} {n \choose k} \lambda_{i}^{k} \lambda_{1}^{n-k} = \frac{e^{-\lambda_{i}-\lambda_{2}}}{n!} (\lambda_{i} + \lambda_{2})^{n}$$

$$Y \sim \text{Paisson}(\lambda_{i} + \lambda_{2})$$

2 Variance

l

(a) Let X be a random variable representing the outcome of the roll of one fair 6-sided die. What is Var(X)?

$$\begin{aligned} /ar(x) &= E[x^{2}] - E[x]^{2} & E[x] = \frac{1}{6}((+2+3+4+5+6) = \frac{7}{2}) \\ &= \frac{91}{6} & Var(x) = \frac{91}{6} - (\frac{7}{2})^{2} = \frac{35}{12} \end{aligned}$$

(b) Let Z be a random variable representing the average of n rolls of a fair die 6-sided die. What is Var(Z)?

$$Z = \frac{1}{n} (X_{1} + ... + X_{n})$$

$$Var(Z) = \frac{1}{n^{2}} (Var(X_{1}) + ... + Var(X_{n}))$$

$$= \frac{1}{n^{2}} (\frac{35}{12} + ... + \frac{35}{12})$$

$$= \frac{1}{n^{2}} (\frac{35}{12} n)$$

$$= \frac{35}{12n}$$

CS 70, Spring 2022, DIS 11A

3 Covariance

(a) We have a bag of 5 red and 5 blue balls. We take two balls uniformly at random from the bag without replacement. Let X_1 and X_2 be indicator random variables for the events of the first and second ball being red, respectively. What is $cov(X_1, X_2)$? Recall that $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

$$E[X_{1}] = P[X_{1} = 1] = \frac{1}{2}$$

$$E[X_{2}] = P[X_{2} = 1] = \frac{1}{2} \cdot \frac{4}{9} + \frac{1}{2} \cdot \frac{5}{9} = \frac{1}{2}$$

$$E[X_{1} X_{2}] = P[X_{1} = 1, X_{2} = 1] = \frac{1}{2} \cdot \frac{4}{9} = \frac{2}{9}$$

$$Cov(X_{1}, X_{2}) = E[X_{1} X_{2}] - E[X_{1}] E[X_{2}]$$

$$= \frac{2}{9} - (\frac{1}{2})(\frac{1}{2})$$

$$= -\frac{1}{36}$$

(b) Now, we have two bags A and B, with 5 red and 5 blue balls each. Draw a ball uniformly at random from A, record its color, and then place it in B. Then draw a ball uniformly at random from B and record its color. Let X_1 and X_2 be indicator random variables for the events of the first and second draws being red, respectively. What is $cov(X_1, X_2)$?

$$E[X_{1}] = \frac{1}{2}$$

$$E[X_{2}] = \frac{1}{2} \cdot \frac{6}{11} + \frac{1}{2} \cdot \frac{5}{11} = \frac{1}{2}$$

$$E[X_{1}X_{2}] = P[X_{1} = 1, X_{2} = 1] = \frac{1}{2} \cdot \frac{6}{11} = \frac{3}{11}$$

$$Cov(X_{1}, X_{2}) = \frac{3}{11} - (\frac{1}{2})(\frac{1}{2}) = \frac{1}{44}$$