1 Contraposition
Prove the statement "if $a+b<c+d$, then $a<c$ or $b<d$ ".
Contrapositive: If $a \geq c$ and $b \geqslant d$, then $a+b \geqslant c+d$.
Proof: $\quad a \geqslant c \quad$ Add inequalities together.

2 Numbers of Friends
Prove that if there are $n \geq 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.
(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where $n>m$, at least one container must contain more than one item. You may use this without proof.)
Suppose all n people have a different number of friends,
The possible number of friends a person has is in $\{0,1,2, \ldots, n-1\}$.
Since there are n possible "buckets", every bucket needs to have 1 person in it. However, this would mean there is 1 person with 0 friends and 1 person with $n-1$ friends. This is a contradiction, because having $n-1$ friends would mean being friends with everyone else, including the person with 0 friends. Thus one of 0 or $n-1$ must be empty, so there must be at least two people who share the same number of friends.

3 Pebbles
Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose that for every way of choosing one pebble from each column, there exists a red pebble among the chosen ones. Prove that there must exist an all-red column.
Contrapositive: If there is no all-red column, then if is possible to pick a blue pebble from each column.
Proof: Suppose there is no all -red column. That means there exists a blue pebble in each column. From each column, we can pick a blue pebble. Thus, we have selected a pebble from every column such that none are red. 4 Preserving Set Operations

For a function f, define the image of a set X to be the set $f(X)=\{y \mid y=f(x)$ for some $x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y)=\{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets.
Recall: For sets X and $Y, X=Y$ if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x)((x \in X) \Longrightarrow(x \in Y))$.
(a) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.
(b) $f(A \cup B)=f(A) \cup f(B)$.
a) Claim 1: $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$

Proof: Suppose $x \in f^{-1}(A \cup B)$.
Then $f(x) \in A \cup B$, so $f(x) \in A$ or $f(x) \in B$.
This means $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$, which means $x \in f^{-1}(A) \cup f^{-1}(B)$.
Claim 2: $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$
Proof: $x \in f^{-1}(A) \cup f^{-1}(B) \Rightarrow x \in f^{-1}(A)$ or $x \in f^{-1}(B)$

$$
\begin{aligned}
& \Rightarrow f(x) \in A \text { or } f(x) \in B \\
& \Rightarrow f(x) \in A \cup B \\
& \Rightarrow x \in f^{-1}(A \cup B)
\end{aligned}
$$

Since $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$, this means $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.
b) Claim 1: $f(A \cup B) \subseteq f(A) \cup f(B)$

Proof: $y \in f(A \cup B) \Rightarrow y=f(x)$ for some $x \in A \cup B$
$\Rightarrow y=f(x)$ where $x \in A$ or
$y=f(x)$ where $x \in B$
$\Rightarrow y \in f(A)$ or $y \in f(B)$
$\Rightarrow y \in f(A) \cup f(B)$
Claim 2: $f(A) \cup f(B) \subseteq f(A \cup B)$
Proof: $y \in f(A) \cup f(B) \Rightarrow y \in f(A)$ or $y \in f(B)$
$\Rightarrow y=f(x)$ for some $x \in A$ or
$y=f(x)$ for some $x \in B$
$\Rightarrow y=f(x)$ for some $x \in A \cup B$

$$
\Rightarrow y \in f(A \cup B)
$$

Claim 1 and Claim 2 together imply $f(A \cup B)=f(A) \cup f(B)$.

