Discussion OA

Implication
$P \Rightarrow Q \quad$ "if P, then Q "

- equivalent to $Q V \neg P$
- To negate, use DeMorgan's: $\neg(P \Rightarrow Q) \equiv \neg(\neg P) \vee Q) \equiv P \wedge \neg Q$

1 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.
(a) $P \wedge(Q \vee P) \equiv P \wedge Q$
(b) $(P \vee Q) \wedge R \equiv(P \wedge R) \vee(Q \wedge R)$
(c) $(P \wedge Q) \vee R \equiv(P \vee R) \wedge(Q \vee R)$
a)

P	Q	$P \wedge(Q \vee P)$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	F	F
F	F	F	F

P	R	(PVQ) R	$(P \wedge R) \vee(Q \wedge R)$	$(P \wedge Q) \cup R$	$(P \vee R) \wedge(Q \vee R)$	
T						
T	T	F	F	F	T	T
T	F	T	T	T	T	T
T	F	F	F	F	F	F
F	T	T	T	T	T	T
F	T	F	F	F	F	F
F	F	T	F	F	T	T
F						

not equivalent
b) equivalent
c) equivalent

2 Propositional Practice
Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.
(a) There is a real number which is not rational.
(b) All integers are natural numbers or are negative, but not both.
(c) If a natural number is divisible by 6 , it is divisible by 2 or it is divisible by 3 .
(d) $(\forall x \in \mathbb{Z})(x \in \mathbb{Q})$
(e) $(\forall x \in \mathbb{Z})(((2 \mid x) \vee(3 \mid x)) \Longrightarrow(6 \mid x))$
(f) $(\forall x \in \mathbb{N})((x>7) \Longrightarrow((\exists a, b \in \mathbb{N})(a+b=x)))$
a) $(\exists x \in \mathbb{R})(x \notin \mathbb{Q}) \quad$ True, $x=\sqrt{2}$
b) $(\forall x \in \mathbb{Z})(((x \in \mathbb{N}) \vee(x<0)) \wedge(\neg(x \in \mathbb{N} \wedge x<0))) \quad$ True, $x \geq 0$ if and orly if $x \in \mathbb{N}$
c) $(\forall x \in \mathbb{N})((6 \mid x) \Rightarrow(2 \mid x) \vee(3 \mid x)) \quad$ True, if $x=6 k$ then $x=2(3 k)$
d) Every integer is rational. True, every $x \in \mathbb{Z}$ can be written $\frac{x}{1}$
e) If an integer is divisible by 2 or 3 , it is divisible by 6 . False, 2 is divisible by 2 but CS 70. Spring 2022, DII 0 A
f) Every natural number greater then 7 is the sum of two natural numbers. True, for any $x \in \mathbb{N}$ where $x \leq 7$, can write $x+0=x$.

3 Converse and Contrapositive
Consider the statement "if a natural number is divisible by 4 , it is divisible by 2 ".
(a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
(b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$.)
(c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
(d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
a) $(\forall x \in \mathbb{N})((4 \mid x) \Rightarrow(2 \mid x))$

True. If $x=4 k$ for $k \in \mathbb{N}$ then $x=2(2 k)$ where $2 k \in \mathbb{N}$, so $2 \mid x$.
b) $(\forall x \in \mathbb{N})((4 \nmid x) \Rightarrow(2 x x))$

False. Consider $x=2$. Then $4 k x$ but $21 x$.
c) $(\forall x \in \mathbb{N})((2 \mid x) \Rightarrow(\psi \mid x)) \quad$ False. Consider $x=2$.
d) $(\forall x \in \mathbb{N})\left(\left(4 x_{x}\right) \Rightarrow\left(2 x_{x}\right)\right)$ True, b/c original was true

4 Equivalences with Quantifiers
Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.

(a)	$\forall x((\exists y Q(x, y)) \Rightarrow P(x))$	$\forall x \exists y(Q(x, y) \Rightarrow P(x))$
(b)	$\neg \exists \exists \forall y(P(x, y) \Rightarrow \neg Q(x, y))$	$\forall x(\exists y P(x, y)) \wedge(\exists y Q(x, y)))$
(c)	$\forall x \exists y(P(x) \Rightarrow Q(x, y))$	$\forall x(P(x) \Rightarrow(\exists y Q(x, y)))$

a) Not equivalent. Let $Q(x, y)$ be " $x>y$ " and $P(x)$ be " $x>5$ ". Then $\forall x((\exists y Q(x, y)) \Rightarrow P(x))$ is saying "for every number x, if there exists a smaller number y then $x>5$ " which is false. But $\forall x \exists y(Q(x, y) \Rightarrow P(x))$ is saying "for all x, there exists a number y such that if $x^{>} y$, then $x^{>} 5^{\prime \prime}$ which is true.
b) Not equivalent. Using DeMorgan's Law on $\neg \exists x \forall y(P(x, y) \Rightarrow \neg Q(x, y))$, we get $\forall x \exists y(P(x, y) \wedge Q(x, y))$ which is not equivalent to $\forall x(\exists y P(x, y)) \wedge\left(\exists_{y} Q(x, y)\right)$.
c) Equivalent. Rewrite $P(x) \Rightarrow Q(x, y)$ as $\neg P(x) \vee Q(x, y)$ and separate into cases. If $P(x)$ is false then both sides are same', if CS 70, Spring 2022, DIS 0A $P(x)$ is true then both sides are still equivalent.

