Discussion DA

Louical	<u>Symbols</u> and	Other Mathematical Symbols			
<u></u>		1	divides		
	80	E	in		
V	UT.	ç	subset		
ヿ	NOT	11			
Ξ	there exists	0	UNION		
	r u	\cap	intersection		
A	tor all	١	colative complement		
Þ	implies	X	. Eralle - comprendert		

Implication

 $P \Rightarrow Q$ "if P, then Q" • equivalent to $QV \neg P$ • To regate, use $V P = \neg (P \Rightarrow Q) = \neg (P \vee Q) = P \land \neg Q$

CS 70 Discrete Mathematics and Probability Theory Spring 2022 Koushik Sen and Satish Rao DIS 0A

1 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

	(a) $P \land (Q \lor P) = P \land Q$	Р	Q	R	$(PVQ)\Lambda R$	$(P\Lambda R) V (Q\Lambda R)$	(PAQ)VR	$(PVR) \land (QVR)$
	$(a) I \land (Q \lor I) = I \land Q$	T	Т	T	Т	Т	T	Т
	(b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$ (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$		T	F	F	F	Т	Т
			F	T	Т	Т	Ť	Т
a)	PLQ LAA/QUALLAAQ	T	F	F	F	F	F	F
		F	Τ	Т	Т	Т	Т	Т
		F	Т	F	F	F	7	F
		F	F	Т	F	F	ד	Т
	F F F F	F	F	F	F	F	F	F
not equivalent			b) equivalent			c) equivalent		

2 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.
- (d) $(\forall x \in \mathbb{Z}) \ (x \in \mathbb{Q})$
- (e) $(\forall x \in \mathbb{Z}) (((2 \mid x) \lor (3 \mid x)) \implies (6 \mid x))$
- (f) $(\forall x \in \mathbb{N}) ((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$
- a) $(\exists x \in \mathbb{R}) (x \notin \mathbb{Q})$ True, $x = \sqrt{2}$
- b) $(\forall x \in \mathbb{Z})(((x \in \mathbb{N}) \vee (x < 0)) \land (\neg (x \in \mathbb{N} \land x < 0)))$ True, $x \ge 0$ if and only if $x \in \mathbb{N}$
- c) $(\forall x \in \mathbb{N})((6|x) \Rightarrow (2|x) \vee (3|x))$ True, if x = 6k then x = 2(3k)
- d) Every integer is rational. True, every x & Z can be written #
- e) If an integer is divisible by 2 or 3, it is divisible by 6. False, 2 is divisible by 2 but CS 70, Spring 2022, DIS 0A
- f) Every natural number greater than 7 is the sum of two natural numbers.

3 Converse and Contrapositive

Consider the statement "if a natural number is divisible by 4, it is divisible by 2".

- (a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \implies Q$ is $\neg P \implies \neg Q$.)
- (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- a) $(\forall_x \in \mathbb{N})((\forall_1x) \Rightarrow (2|x))$
 - True. If x = 4k for $k \in \mathbb{N}$ then x = 2(2k) where $2k \in \mathbb{N}$, so 2|x.
- b) $(\forall x \in \mathbb{N}) ((\forall x) \Rightarrow (2 x))$ False. Consider x = 2. Then $\forall x = 2 + 2 = 2$.
- c) $(\forall x \in \mathbb{N})((2|x) \Rightarrow (\forall |x))$ False. Consider x = 2.
- d) $(\forall x \in \mathbb{N})((\forall x) \Rightarrow (2 \neq x))$ True, b/c original was true

4 Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.